Characterisation of a Non-Organofunctional Silane Film Deposited on Al, Zn and Al-43.4Zn-1.6Si Alloy-Coated Steel, Part I. Surface Characterization by ToF-SIMS
Document identifier: oai:dalea.du.se:2673
Keyword: Metal substrates; silane films; silane film structure; ToF-SIMSPublication year: 2001Relevant Sustainable Development Goals (SDGs):
The SDG label(s) above have been assigned by OSDG.aiAbstract: The need to develop new environmentally friendly pretreatments in the surface engineering of metal substrates has become more and more important.This is mainly due to the toxic and carcinogenic properties of the chromium-based surface pretreatments frequently used in the industry. During the last decade, simple solution-dip silane-based pretreatments have emerged as promising candidates for the replacement of currently used pretreatments of metals. Recent investigations have shown that the performance of these newly developed pretreatments is strongly dependent on the chemical composition and structure of the silane film and consequently a lot of work, based on advanced surface analytical techniques, is needed in order to characterize these properties. In the present study, time-of-flight secondary ion mass spectrometry (ToF-SIMS) has been used to characterize the structure of thin films of the non-organofunctional silane 1,2-bis(triethoxysilyl)ethane (BTSE) deposited on three different metal substrates, i.e. Al, Zn and Al-43.4Zn-1.6Si (AlZn) alloy-coated steel. Of special interest was an evaluation of the influence of substrate material on the structure and composition of the silane films.
The results show that the BTSE silane forms a thin, evenly distributed film over the substrate surfaces and that the molecular structure of the silane film is independent of the type of metal substrate. Analysis of the molecular ions in the positive mode shows that the surface structure of the BTSE silane is very complex and that the BTSE condensates via one to three SiOSi bridges. Also, the results show that the BTSE silane is not fully hydrolysed using a hydrolysing time of 1 h. Finally, if an alcohol is used as a solvent for the BTSE there is a clear chemical interaction between the alcohol and the silane, resulting in an exchange of alkoxy groups between the alcohol and the silane. Copyright © 2001 John Wiley & Sons, Ltd.
Authors
Ulf Bexell
Högskolan Dalarna; Materialvetenskap
Other publications
>>
Mikael Olsson
Högskolan Dalarna; Materialvetenskap
Other publications
>>
Record metadata
Click to view metadata
header:
identifier: oai:dalea.du.se:2673
datestamp: 2021-04-15T12:52:56Z
setSpec: SwePub-du
metadata:
mods:
@attributes:
version: 3.7
recordInfo:
recordContentSource: du
recordCreationDate: 2007-04-04
identifier: http://urn.kb.se/resolve?urn=urn:nbn:se:du-2673
titleInfo:
@attributes:
lang: eng
title: Characterisation of a Non-Organofunctional Silane Film Deposited on Al Zn and Al-43.4Zn-1.6Si Alloy-Coated Steel Part I. Surface Characterization by ToF-SIMS
abstract: The need to develop new environmentally friendly pretreatments in the surface engineering of metal substrates has become more and more important.This is mainly due to the toxic and carcinogenic properties of the chromium-based surface pretreatments frequently used in the industry. During the last decade simple solution-dip silane-based pretreatments have emerged as promising candidates for the replacement of currently used pretreatments of metals. Recent investigations have shown that the performance of these newly developed pretreatments is strongly dependent on the chemical composition and structure of the silane film and consequently a lot of work based on advanced surface analytical techniques is needed in order to characterize these properties. In the present study time-of-flight secondary ion mass spectrometry (ToF-SIMS) has been used to characterize the structure of thin films of the non-organofunctional silane 12-bis(triethoxysilyl)ethane (BTSE) deposited on three different metal substrates i.e. Al Zn and Al-43.4Zn-1.6Si (AlZn) alloy-coated steel. Of special interest was an evaluation of the influence of substrate material on the structure and composition of the silane films. \nThe results show that the BTSE silane forms a thin evenly distributed film over the substrate surfaces and that the molecular structure of the silane film is independent of the type of metal substrate. Analysis of the molecular ions in the positive mode shows that the surface structure of the BTSE silane is very complex and that the BTSE condensates via one to three SiOSi bridges. Also the results show that the BTSE silane is not fully hydrolysed using a hydrolysing time of 1 h. Finally if an alcohol is used as a solvent for the BTSE there is a clear chemical interaction between the alcohol and the silane resulting in an exchange of alkoxy groups between the alcohol and the silane. Copyright © 2001 John Wiley & Sons Ltd.
subject:
@attributes:
lang: eng
topic: metal substrates; silane films; silane film structure; ToF-SIMS
language:
languageTerm: eng
genre:
publication/journal-article
ref
note:
Published
2
name:
@attributes:
type: personal
authority: du
namePart:
Bexell
Ulf
role:
roleTerm: aut
affiliation:
Högskolan Dalarna
Materialvetenskap
nameIdentifier: ubx
@attributes:
type: personal
authority: du
namePart:
Olsson
Mikael
role:
roleTerm: aut
affiliation:
Högskolan Dalarna
Materialvetenskap
nameIdentifier: mol
originInfo:
dateIssued: 2001
relatedItem:
@attributes:
type: host
titleInfo:
title: Surface and Interface Analysis
identifier:
0142-2421
1096-9918
part:
detail:
@attributes:
type: volume
number: 31
@attributes:
type: issue
number: 3
extent:
start: 212
end: 222
physicalDescription:
form: print
typeOfResource: text