Effect of Oligonucleotide Truncation on Single-nucleotide Distinction by Solid Phase Hybridization

Document identifier: oai:dalea.du.se:2297
Publication year: 2002
Relevant Sustainable Development Goals (SDGs):
SDG 9 Industry, innovation and infrastructureSDG 3 Good health and wellbeing
The SDG label(s) above have been assigned by OSDG.ai

Abstract:

Oligonucleotide microarrays are used to analyze target sequences on the basis of differences in hybridization stability between matched and mismatched probe-target duplexes. DNA microarray manufacture via photolithographic synthesis generates a minority of full-length oligonucleotide probes along with a series of 5'-truncated contaminants. In a model experiment, we now investigate the effect of truncated oligonucleotides on the ability to distinguish target sequence variants that differ in a single nucleotide position. A series of oligonucleotides, mixed in proportions simulating stepwise synthetic yields of between 82 and 100%, were bound to a solid support and allowed to hybridize to a target molecule. The extent of hybridization was monitored over a range of temperatures via the fluorescence of a double-strand-specific dye. The discriminatory power of pure oligonucleotide probes was found to be significantly greater than that of a population of truncated probes, but only over a limited temperature interval. We conclude that at optimal temperatures greater oligonucleotide quality can improve the performance of oligonucleotide hybridization microarrays.

Authors

Magnus Jobs

Högskolan Dalarna; Medicinsk vetenskap
Other publications >>

Record metadata

Click to view metadata