Modular Product Verifications Based on Design for Assembly

Document identifier:
Keyword: Engineering and Technology, Mechanical Engineering, Production Engineering, Human Work Science and Ergonomics, Teknik och teknologier, Maskinteknik, Produktionsteknik, arbetsvetenskap och ergonomi, Design for assembly, Product verifications, Product defects, Modular products
Publication year: 2005
Relevant Sustainable Development Goals (SDGs):
SDG 9 Industry, innovation and infrastructure
The SDG label(s) above have been assigned by


The desire to conquer markets through advanced product design and trendy business strategies are still predominant approaches in industry today. In fact, product development has acquired an ever more central role in the strategic planning of companies, and it has extended its influence to R&D funding levels as well. It is not surprising that many national R&D project frameworks within the EU today are dominated by product development topics, leaving production engineering, robotics, and systems on the sidelines. The reasons may be many but, unfortunately, the link between product development and the production processes they cater for are seldom treated in depth. The issue dealt with in this article relates to how product development is applied in order to attain the required production quality levels a company may desire, as well as how one may counter assembly defects and deviations through quantifiable design approaches. It is recognized that product verifications (tests, inspections, etc.) are necessary, but the application of these tactics often result in lead-time extensions and increased costs. Modular architectures improve this by simplifying the verification of the assembled product at module level. Furthermore, since Design for Assembly (DFA) has shown the possibility to identify defective assemblies, it may be possible to detect potential assembly defects already in the product and module design phase. The intention of this paper is to discuss and describe the link between verifications of modular architectures, defects and design for assembly. The paper is based on literature and case studies; tables and diagrams are included with the intention of increasing understanding of the relation between poor designs, defects and product verifications.


Patrik Kenger

Högskolan Dalarna; Maskinteknik
Other publications >>

Anders Bergdahl

Other publications >>

Mauro Onori

Other publications >>

Documents attached

Click on thumbnail to read

Record metadata

Click to view metadata