Estimation of Faecal Indicator Bacteria in Stormwater by Multiple Regression Modelling and Microbial Partitioning to Solids
New Trends in Urban Drainage Modelling
Document identifier: oai:DiVA.org:ltu-77754
Access full text here:
10.1007/978-3-319-99867-1_143Keyword: Engineering and Technology,
Civil Engineering,
Water Engineering,
Teknik och teknologier,
Samhällsbyggnadsteknik,
Vattenteknik,
Faecal indicator bacteria (FIBs),
Sanitary surveys of storm sewers,
Statistical modelling of FIBs,
VA-teknik,
Urban Water Engineering,
Centrumbildning - Centrum för dagvattenhantering (DRIZZLE),
Centre - Centre for Stormwater Management (DRIZZLE)Publication year: 2019Relevant Sustainable Development Goals (SDGs):
The SDG label(s) above have been assigned by OSDG.aiAbstract: Concerns about the contamination of sources of drinking water by stormwater motivated a sanitary survey of several urban catchments in the City of Östersund (Northern Sweden). A data subset from these surveys, comprising of faecal indicator bacteria (FIB) concentrations (E. coli and enterococci), measured for six storm events in three catchments, was used for investigating the feasibility of developing a FIB estimation procedure for the studied catchments by two approaches: (a) Multiple regression models, and (b) microbial partitioning to solids. In regressions, five explanatory variables (associated constituents) were derived from the literature and measured data: stormwater temperature and flow rate, and measurements of total suspended solids (TSS), total phosphorus (TP) and electric conductivity (EC). The obtained regression models were satisfactory for enterococci (regression of modelled FIBs on measured FIB was described by R2 = 0.7), but less acceptable for E. coli (R2 = 0.2). Microbial partitioning to stormwater solids from gully pots was found infeasible; the sediment sampled contained very low FIB counts. Hence, the former method is recommended for further refinement and applications.
Authors
Helen Galfi
Luleå tekniska universitet; Arkitektur och vatten
Other publications
>>
Helene Österlund
Luleå tekniska universitet; Arkitektur och vatten
Other publications
>>
Jiri Marsalek
Luleå tekniska universitet; Arkitektur och vatten
Other publications
>>
Maria Viklander
Luleå tekniska universitet; Arkitektur och vatten
Other publications
>>
Record metadata
Click to view metadata
header:
identifier: oai:DiVA.org:ltu-77754
datestamp: 2021-06-15T23:01:59Z
setSpec: SwePub-ltu
metadata:
mods:
@attributes:
version: 3.7
recordInfo:
recordContentSource: ltu
recordCreationDate: 2020-02-18
identifier:
http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-77754
10.1007/978-3-319-99867-1_143
2-s2.0-85071528255
titleInfo:
@attributes:
lang: eng
title: Estimation of Faecal Indicator Bacteria in Stormwater by Multiple Regression Modelling and Microbial Partitioning to Solids
abstract: Concerns about the contamination of sources of drinking water by stormwater motivated a sanitary survey of several urban catchments in the City of Östersund (Northern Sweden). A data subset from these surveys comprising of faecal indicator bacteria (FIB) concentrations (E. coli and enterococci) measured for six storm events in three catchments was used for investigating the feasibility of developing a FIB estimation procedure for the studied catchments by two approaches: (a) Multiple regression models and (b) microbial partitioning to solids. In regressions five explanatory variables (associated constituents) were derived from the literature and measured data: stormwater temperature and flow rate and measurements of total suspended solids (TSS) total phosphorus (TP) and electric conductivity (EC). The obtained regression models were satisfactory for enterococci (regression of modelled FIBs on measured FIB was described by R2 = 0.7) but less acceptable for E. coli (R2 = 0.2). Microbial partitioning to stormwater solids from gully pots was found infeasible; the sediment sampled contained very low FIB counts. Hence the former method is recommended for further refinement and applications.
subject:
@attributes:
lang: eng
authority: uka.se
topic:
Engineering and Technology
Civil Engineering
Water Engineering
@attributes:
lang: swe
authority: uka.se
topic:
Teknik och teknologier
Samhällsbyggnadsteknik
Vattenteknik
@attributes:
lang: eng
topic: Faecal indicator bacteria (FIBs)
@attributes:
lang: eng
topic: Sanitary surveys of storm sewers
@attributes:
lang: eng
topic: Statistical modelling of FIBs
@attributes:
lang: swe
authority: ltu
topic: VA-teknik
genre: Research subject
@attributes:
lang: eng
authority: ltu
topic: Urban Water Engineering
genre: Research subject
@attributes:
lang: swe
authority: ltu
topic: Centrumbildning - Centrum för dagvattenhantering (DRIZZLE)
genre: Research subject
@attributes:
lang: eng
authority: ltu
topic: Centre - Centre for Stormwater Management (DRIZZLE)
genre: Research subject
language:
languageTerm: eng
genre:
conference/other
ref
note:
Published
4
ISBN för värdpublikation: 978-3-319-99866-4 978-3-319-99867-1
name:
@attributes:
type: personal
authority: ltu
namePart:
Galfi
Helen
role:
roleTerm: aut
affiliation:
Luleå tekniska universitet
Arkitektur och vatten
nameIdentifier: helgal
@attributes:
type: personal
authority: ltu
namePart:
Österlund
Helene
role:
roleTerm: aut
affiliation:
Luleå tekniska universitet
Arkitektur och vatten
nameIdentifier:
helost
0000-0002-4732-7348
@attributes:
type: personal
authority: ltu
namePart:
Marsalek
Jiri
role:
roleTerm: aut
affiliation:
Luleå tekniska universitet
Arkitektur och vatten
nameIdentifier:
jirmar
0000-0001-9938-8217
@attributes:
type: personal
authority: ltu
namePart:
Viklander
Maria
role:
roleTerm: aut
affiliation:
Luleå tekniska universitet
Arkitektur och vatten
nameIdentifier:
marvik
0000-0003-1725-6478
originInfo:
dateIssued: 2019
relatedItem:
@attributes:
type: host
titleInfo:
title: New Trends in Urban Drainage Modelling
subTitle: New Trends in Urban Drainage Modelling
part:
extent:
start: 830
end: 835
@attributes:
type: series
titleInfo:
title: Green Energy and Technology
identifier:
1865-3529
1865-3537
physicalDescription:
form: print
typeOfResource: text