DFT study of the reduction reaction of calcium perchlorate on olivine surface
Implications to formation of Martian’s regolith
Document identifier: oai:DiVA.org:ltu-77702
Access full text here:
10.1016/j.apsusc.2020.145634Keyword: Natural Sciences,
Mars,
Atmospheric science,
Density Functional Theory (DFT),
Infrared spectroscopy,
Redox,
Physisorption,
Chemisorption,
Olivine,
(1 0 0) forsterite surface,
Regolith,
Magnesium peroxide,
Ozone,
Chlorite,
Chlorate,
Water,
Chemical Sciences,
Oxygen,
Reduction,
Calcium perchlorate,
Rymd- och flygteknik,
Maskinteknik,
Teknik och teknologier,
Aerospace Engineering,
Mechanical Engineering,
Engineering and Technology,
Materialkemi,
Kemi,
Naturvetenskap,
Materials Chemistry,
AtmosfärsvetenskapPublication year: 2020Relevant Sustainable Development Goals (SDGs):
The SDG label(s) above have been assigned by OSDG.aiAbstract: Perchlorates have been found widespread on the surface of Mars, their origin and degradation pathways are not understood to date yet. We investigate here, from a theoretical point of view, the potential redox processes that take place in the interaction of Martian minerals such as olivine, with anhydrous and hydrated perchlorates. For this theoretical study, we take as mineral substrate the (1 0 0) surface of forsterite and calcium perchlorate salt as adsorbate. Our DFT calculations suggests a reduction pathway to chlorate and chlorite. When the perchlorate has more than 4 water molecules, this mechanism, which does not require high-temperature or high energy sources, results in parallel with the oxidation of the mineral surface, forming magnesium peroxide, MgO2, and in the formation of ClO3, which through photolysis is known to form ClO-O2. Because of the high UV irradiance that reaches the surface of Mars, this may be a source of O2 on Mars. Our results suggest that this process may be a natural removal pathway for perchlorates from the Martian regolith, which in the presence of atmospheric water for salt hydration, can furthermore lead to the production of oxygen. This mechanism may thus have implications on the present and future habitability of the Martian surface.
Authors
Elizabeth Escamilla-Roa
Luleå tekniska universitet; Rymdteknik; Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Granada, Spain
Other publications
>>
María-Paz Zorzano Mier
Luleå tekniska universitet; Rymdteknik; Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz, Madrid, Spain
Other publications
>>
Javier Martin-Torres
Luleå tekniska universitet; Rymdteknik; Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Granada, Spain
Other publications
>>
Alfonso Hernández-Laguna
Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Granada, Spain
Other publications
>>
C.Ignacio Saínz-Díaz
Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Granada, Spain
Other publications
>>
Record metadata
Click to view metadata
header:
identifier: oai:DiVA.org:ltu-77702
datestamp: 2021-04-19T12:42:43Z
setSpec: SwePub-ltu
metadata:
mods:
@attributes:
version: 3.7
recordInfo:
recordContentSource: ltu
recordCreationDate: 2020-02-14
identifier:
http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-77702
10.1016/j.apsusc.2020.145634
2-s2.0-85079320511
titleInfo:
@attributes:
lang: eng
title: DFT study of the reduction reaction of calcium perchlorate on olivine surface
subTitle: Implications to formation of Martian’s regolith
abstract: Perchlorates have been found widespread on the surface of Mars their origin and degradation pathways are not understood to date yet. We investigate here from a theoretical point of view the potential redox processes that take place in the interaction of Martian minerals such as olivine with anhydrous and hydrated perchlorates. For this theoretical study we take as mineral substrate the (1 0 0) surface of forsterite and calcium perchlorate salt as adsorbate. Our DFT calculations suggests a reduction pathway to chlorate and chlorite. When the perchlorate has more than 4 water molecules this mechanism which does not require high-temperature or high energy sources results in parallel with the oxidation of the mineral surface forming magnesium peroxide MgO2 and in the formation of ClO3 which through photolysis is known to form ClO-O2. Because of the high UV irradiance that reaches the surface of Mars this may be a source of O2 on Mars. Our results suggest that this process may be a natural removal pathway for perchlorates from the Martian regolith which in the presence of atmospheric water for salt hydration can furthermore lead to the production of oxygen. This mechanism may thus have implications on the present and future habitability of the Martian surface.
subject:
@attributes:
lang: eng
authority: uka.se
topic:
Natural Sciences
Chemical Sciences
Materials Chemistry
@attributes:
lang: swe
authority: uka.se
topic:
Naturvetenskap
Kemi
Materialkemi
@attributes:
lang: eng
authority: uka.se
topic:
Engineering and Technology
Mechanical Engineering
Aerospace Engineering
@attributes:
lang: swe
authority: uka.se
topic:
Teknik och teknologier
Maskinteknik
Rymd- och flygteknik
@attributes:
lang: eng
topic: Calcium perchlorate
@attributes:
lang: eng
topic: Reduction
@attributes:
lang: eng
topic: Oxygen
@attributes:
lang: eng
topic: Water
@attributes:
lang: eng
topic: Mars
@attributes:
lang: eng
topic: Chlorate
@attributes:
lang: eng
topic: Chlorite
@attributes:
lang: eng
topic: Ozone
@attributes:
lang: eng
topic: Magnesium peroxide
@attributes:
lang: eng
topic: Regolith
@attributes:
lang: eng
topic: (1 0 0) forsterite surface
@attributes:
lang: eng
topic: Olivine
@attributes:
lang: eng
topic: Chemisorption
@attributes:
lang: eng
topic: Physisorption
@attributes:
lang: eng
topic: Redox
@attributes:
lang: eng
topic: Infrared spectroscopy
@attributes:
lang: eng
topic: Density Functional Theory (DFT)
@attributes:
lang: eng
authority: ltu
topic: Atmospheric science
genre: Research subject
@attributes:
lang: swe
authority: ltu
topic: Atmosfärsvetenskap
genre: Research subject
language:
languageTerm: eng
genre:
publication/journal-article
ref
note:
Published
5
Validerad;2020;Nivå 2;2020-02-17 (johcin)
name:
@attributes:
type: personal
authority: ltu
namePart:
Escamilla-Roa
Elizabeth
role:
roleTerm: aut
affiliation:
Luleå tekniska universitet
Rymdteknik
Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR) Granada Spain
nameIdentifier:
eliesc
0000-0003-2286-8380
@attributes:
type: personal
authority: ltu
namePart:
Zorzano Mier
María-Paz
role:
roleTerm: aut
affiliation:
Luleå tekniska universitet
Rymdteknik
Centro de Astrobiología (INTA-CSIC) Torrejón de Ardoz Madrid Spain
nameIdentifier:
marzor
0000-0002-4492-9650
@attributes:
type: personal
authority: ltu
namePart:
Martin-Torres
Javier
role:
roleTerm: aut
affiliation:
Luleå tekniska universitet
Rymdteknik
Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR) Granada Spain
nameIdentifier:
javmar
0000-0001-6479-2236
@attributes:
type: personal
namePart:
Hernández-Laguna
Alfonso
role:
roleTerm: aut
affiliation: Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR) Granada Spain
@attributes:
type: personal
namePart:
Saínz-Díaz
C.Ignacio
role:
roleTerm: aut
affiliation: Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR) Granada Spain
originInfo:
dateIssued: 2020
publisher: Elsevier
relatedItem:
@attributes:
type: host
titleInfo:
title: Applied Surface Science
identifier:
0169-4332
1873-5584
part:
detail:
@attributes:
type: volume
number: 512
@attributes:
type: artNo
number: 145634
physicalDescription:
form: print
typeOfResource: text