Synaptic Integration of Spatiotemporal Features with a Dynamic Neuromorphic Processor
Conference Proceedings
Document identifier: oai:DiVA.org:ltu-77686
Access full text here:
10.1109/IJCNN48605.2020.9207210Keyword: Engineering and Technology,
Spiking Neural Networks,
Maskininlärning,
Cyber-Physical Systems,
Cyberfysiska system,
DYNAP,
Synaptic and Dendritic Integration,
Feature Detection,
Spatiotemporal,
Neuromorphic,
Datavetenskap (datalogi),
Electrical Engineering, Electronic Engineering, Information Engineering,
Data- och informationsvetenskap,
Naturvetenskap,
Computer Sciences,
Computer and Information Sciences,
Natural Sciences,
Annan elektroteknik och elektronik,
Elektroteknik och elektronik,
Teknik och teknologier,
Other Electrical Engineering, Electronic Engineering, Information Engineering,
Machine LearningPublication year: 2020Relevant Sustainable Development Goals (SDGs):
The SDG label(s) above have been assigned by OSDG.aiAbstract: Spiking neurons can perform spatiotemporal feature detection by nonlinear synaptic and dendritic integration of presynaptic spike patterns. Multicompartment models of nonlinear dendrites and related neuromorphic circuit designs enable faithful imitation of such dynamic integration processes, but these approaches are also associated with a relatively high computing cost or circuit size. Here, we investigate synaptic integration of spatiotemporal spike patterns with multiple dynamic synapses on point-neurons in the DYNAP-SE neuromorphic processor, which offers a complementary resource-efficient, albeit less flexible, approach to feature detection. We investigate how previously proposed excitatory–inhibitory pairs of dynamic synapses can be combined to integrate multiple inputs, and we generalize that concept to a case in which one inhibitory synapse is combined with multiple excitatory synapses. We characterize the resulting delayed excitatory postsynaptic potentials (EPSPs) by measuring and analyzing the membrane potentials of the neuromorphic neuronal circuits. We find that biologically relevant EPSP delays, with variability of order 10 milliseconds per neuron, can be realized in the proposed manner by selecting different synapse combinations, thanks to device mismatch. Based on these results, we demonstrate that a single point-neuron with dynamic synapses in the DYNAP-SE can respond selectively to presynaptic spikes with a particular spatiotemporal structure, which enables, for instance, visual feature tuning of single neurons.
Authors
Mattias Nilsson
Luleå tekniska universitet; EISLAB
Other publications
>>
Foteini Liwicki
Luleå tekniska universitet; EISLAB
Other publications
>>
Fredrik Sandin
Luleå tekniska universitet; EISLAB
Other publications
>>
Documents attached
|
Click on thumbnail to read
|
Record metadata
Click to view metadata
header:
identifier: oai:DiVA.org:ltu-77686
datestamp: 2021-06-11T23:03:56Z
setSpec: SwePub-ltu
metadata:
mods:
@attributes:
version: 3.7
recordInfo:
recordContentSource: ltu
recordCreationDate: 2020-02-13
identifier:
http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-77686
10.1109/IJCNN48605.2020.9207210
2-s2.0-85093820242
titleInfo:
@attributes:
lang: eng
title: Synaptic Integration of Spatiotemporal Features with a Dynamic Neuromorphic Processor
abstract: Spiking neurons can perform spatiotemporal feature detection by nonlinear synaptic and dendritic integration of presynaptic spike patterns. Multicompartment models of nonlinear dendrites and related neuromorphic circuit designs enable faithful imitation of such dynamic integration processes but these approaches are also associated with a relatively high computing cost or circuit size. Here we investigate synaptic integration of spatiotemporal spike patterns with multiple dynamic synapses on point-neurons in the DYNAP-SE neuromorphic processor which offers a complementary resource-efficient albeit less flexible approach to feature detection. We investigate how previously proposed excitatory–inhibitory pairs of dynamic synapses can be combined to integrate multiple inputs and we generalize that concept to a case in which one inhibitory synapse is combined with multiple excitatory synapses. We characterize the resulting delayed excitatory postsynaptic potentials (EPSPs) by measuring and analyzing the membrane potentials of the neuromorphic neuronal circuits. We find that biologically relevant EPSP delays with variability of order 10 milliseconds per neuron can be realized in the proposed manner by selecting different synapse combinations thanks to device mismatch. Based on these results we demonstrate that a single point-neuron with dynamic synapses in the DYNAP-SE can respond selectively to presynaptic spikes with a particular spatiotemporal structure which enables for instance visual feature tuning of single neurons.
subject:
@attributes:
lang: eng
authority: uka.se
topic:
Engineering and Technology
Electrical Engineering Electronic Engineering Information Engineering
Other Electrical Engineering Electronic Engineering Information Engineering
@attributes:
lang: swe
authority: uka.se
topic:
Teknik och teknologier
Elektroteknik och elektronik
Annan elektroteknik och elektronik
@attributes:
lang: eng
authority: uka.se
topic:
Natural Sciences
Computer and Information Sciences
Computer Sciences
@attributes:
lang: swe
authority: uka.se
topic:
Naturvetenskap
Data- och informationsvetenskap
Datavetenskap (datalogi)
@attributes:
lang: eng
topic: Spiking Neural Networks
@attributes:
lang: eng
topic: Neuromorphic
@attributes:
lang: eng
topic: Spatiotemporal
@attributes:
lang: eng
topic: Feature Detection
@attributes:
lang: eng
topic: Synaptic and Dendritic Integration
@attributes:
lang: eng
topic: DYNAP
@attributes:
lang: swe
authority: ltu
topic: Cyberfysiska system
genre: Research subject
@attributes:
lang: eng
authority: ltu
topic: Cyber-Physical Systems
genre: Research subject
@attributes:
lang: swe
authority: ltu
topic: Maskininlärning
genre: Research subject
@attributes:
lang: eng
authority: ltu
topic: Machine Learning
genre: Research subject
language:
languageTerm: eng
genre:
conference/other
ref
note:
Published
3
ISBN för värdpublikation: 978-1-7281-6926-2 978-1-7281-6927-9
name:
@attributes:
type: personal
authority: ltu
namePart:
Nilsson
Mattias
role:
roleTerm: aut
affiliation:
Luleå tekniska universitet
EISLAB
nameIdentifier: niatml
@attributes:
type: personal
authority: ltu
namePart:
Liwicki
Foteini
role:
roleTerm: aut
affiliation:
Luleå tekniska universitet
EISLAB
nameIdentifier: fotsim
@attributes:
type: personal
authority: ltu
namePart:
Sandin
Fredrik
1977-
role:
roleTerm: aut
affiliation:
Luleå tekniska universitet
EISLAB
nameIdentifier:
fresan
0000-0001-5662-825x
relatedItem:
@attributes:
type: host
genre: grantAgreement
name:
@attributes:
type: corporate
namePart: Kempestiftelserna
role:
roleTerm: fnd
identifier: JCK-1809 SMK-1429
@attributes:
type: host
genre: grantAgreement
name:
@attributes:
type: corporate
namePart: Stiftelsen för internationalisering av högre utbildning och forskning (STINT)
role:
roleTerm: fnd
identifier: IG2011-2025
@attributes:
type: host
titleInfo:
title: 2020 International Joint Conference on Neural Networks (IJCNN)
subTitle: Conference Proceedings
@attributes:
type: series
titleInfo:
title: International Joint Conference on Neural Networks
identifier:
2161-4393
2161-4407
originInfo:
dateIssued: 2020
publisher: IEEE
location:
url: http://ltu.diva-portal.org/smash/get/diva2:1392851/FULLTEXT01.pdf
accessCondition: gratis
physicalDescription:
form: electronic
typeOfResource: text