Data science
developing theoretical contributions in information systems via text analytics
Document identifier: oai:DiVA.org:ltu-77324
Access full text here:
10.1186/s40537-019-0280-6Keyword: Natural Sciences,
Medie- och kommunikationsvetenskap,
Methodology,
Text analytics,
Information systems,
Contribution,
Theory,
Data science,
Systemvetenskap, informationssystem och informatik med samhällsvetenskaplig inriktning,
Samhällsvetenskap,
Computer and Information Sciences,
Information Systems, Social aspects,
Media and Communications,
Social Sciences,
Systemvetenskap, informationssystem och informatik,
Data- och informationsvetenskap,
Naturvetenskap,
Information Systems,
InformationssystemPublication year: 2020Relevant Sustainable Development Goals (SDGs):
The SDG label(s) above have been assigned by OSDG.aiAbstract: Scholars have been increasingly calling for innovative research in the organizational sciences in general, and the information systems (IS) field in specific, one that breaks from the dominance of gap-spotting and specific methodical confinements. Hence, pushing the boundaries of information systems is needed, and one way to do so is by relying more on data and less on a priori theory. Data, being considered one of the most important resources in research, and society at large, requires the application of scientific methods to extract valuable knowledge towards theoretical development. However, the nature of knowledge varies from a scientific discipline to another, and the views on data science (DS) studies are substantially diverse. These views vary from being seen as a new scientific (fourth) paradigm, to an extension of existing paradigms with new tools and methods, to a phenomenon or object of study. In this paper, we review these perspectives and expand on the view of data science as a methodology for scientific inquiry. Motivated by the IS discipline’s history and accumulated knowledge in using DS methods for understanding organizational and societal phenomena, IS theory and theoretical contributions are given particular attention as the key outcome of adopting such methodology. Exemplar studies are analyzed to show how rigor can be achieved, and an illustrative example using text analytics to study digital innovation is provided to guide researchers.
Authors
Aya Rizk
Luleå tekniska universitet; Digitala tjänster och system
Other publications
>>
Ahmed Elragal
Luleå tekniska universitet; Digitala tjänster och system
Other publications
>>
Documents attached
|
Click on thumbnail to read
|
Record metadata
Click to view metadata
header:
identifier: oai:DiVA.org:ltu-77324
datestamp: 2021-04-19T12:57:24Z
setSpec: SwePub-ltu
metadata:
mods:
@attributes:
version: 3.7
recordInfo:
recordContentSource: ltu
recordCreationDate: 2020-01-09
identifier:
http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-77324
10.1186/s40537-019-0280-6
2-s2.0-85077584057
titleInfo:
@attributes:
lang: eng
title: Data science
subTitle: developing theoretical contributions in information systems via text analytics
abstract: Scholars have been increasingly calling for innovative research in the organizational sciences in general and the information systems (IS) field in specific one that breaks from the dominance of gap-spotting and specific methodical confinements. Hence pushing the boundaries of information systems is needed and one way to do so is by relying more on data and less on a priori theory. Data being considered one of the most important resources in research and society at large requires the application of scientific methods to extract valuable knowledge towards theoretical development. However the nature of knowledge varies from a scientific discipline to another and the views on data science (DS) studies are substantially diverse. These views vary from being seen as a new scientific (fourth) paradigm to an extension of existing paradigms with new tools and methods to a phenomenon or object of study. In this paper we review these perspectives and expand on the view of data science as a methodology for scientific inquiry. Motivated by the IS discipline’s history and accumulated knowledge in using DS methods for understanding organizational and societal phenomena IS theory and theoretical contributions are given particular attention as the key outcome of adopting such methodology. Exemplar studies are analyzed to show how rigor can be achieved and an illustrative example using text analytics to study digital innovation is provided to guide researchers.
subject:
@attributes:
lang: eng
authority: uka.se
topic:
Natural Sciences
Computer and Information Sciences
Information Systems
@attributes:
lang: swe
authority: uka.se
topic:
Naturvetenskap
Data- och informationsvetenskap
Systemvetenskap informationssystem och informatik
@attributes:
lang: eng
authority: uka.se
topic:
Social Sciences
Media and Communications
Information Systems Social aspects
@attributes:
lang: swe
authority: uka.se
topic:
Samhällsvetenskap
Medie- och kommunikationsvetenskap
Systemvetenskap informationssystem och informatik med samhällsvetenskaplig inriktning
@attributes:
lang: eng
topic: Data science
@attributes:
lang: eng
topic: Theory
@attributes:
lang: eng
topic: Contribution
@attributes:
lang: eng
topic: Information systems
@attributes:
lang: eng
topic: Text analytics
@attributes:
lang: eng
topic: Methodology
@attributes:
lang: eng
authority: ltu
topic: Information systems
genre: Research subject
@attributes:
lang: swe
authority: ltu
topic: Informationssystem
genre: Research subject
language:
languageTerm: eng
genre:
publication/journal-article
ref
note:
Published
2
Validerad;2020;Nivå 1;2020-01-24 (johcin)
name:
@attributes:
type: personal
authority: ltu
namePart:
Rizk
Aya
1988-
role:
roleTerm: aut
affiliation:
Luleå tekniska universitet
Digitala tjänster och system
nameIdentifier:
ayariz
0000-0001-8693-2295
@attributes:
type: personal
authority: ltu
namePart:
Elragal
Ahmed
role:
roleTerm: aut
affiliation:
Luleå tekniska universitet
Digitala tjänster och system
nameIdentifier:
ahmelr
0000-0003-4250-4752
originInfo:
dateIssued: 2020
publisher: Springer
relatedItem:
@attributes:
type: host
titleInfo:
title: Journal of Big Data
identifier: 2196-1115
part:
detail:
@attributes:
type: volume
number: 7
@attributes:
type: artNo
number: 7
location:
url: https://doi.org/10.1186/s40537-019-0280-6
url: http://ltu.diva-portal.org/smash/get/diva2:1384175/FULLTEXT01.pdf
accessCondition:
gratis
gratis
physicalDescription:
form: electronic
typeOfResource: text