Active friction control by using CO2 and moisture

Document identifier:
Keyword: Engineering and Technology, Mechanical Engineering, Tribology (Interacting Surfaces including Friction, Lubrication and Wear), Teknik och teknologier, Maskinteknik, Tribologi (ytteknik omfattande friktion, nötning och smörjning), Friction control, Machine Elements, Maskinelement
Publication year: 2019
Relevant Sustainable Development Goals (SDGs):
SDG 9 Industry, innovation and infrastructure
The SDG label(s) above have been assigned by


Nowadays the demand for intelligent control of tribological interactions is strongly increasing in various applications. We often strive to minimize friction but there are also many situations where high friction is desirable. In some cases, something in between, i.e. optimum friction, is attractive. Driven by the broad application prospects, many controllable friction systems regulated with external stimuli such as solvent, pH, temperature, electric potential, and magnetic field have been designed and fabricated. When external stimuli are imposed on the smart materials, the macroscopic physicochemical properties of the materials are dramatically changed, making controllable friction behavior to become possible. However, most of these exploratory works are in nano/micro size and it’s difficult to use these incredible methods in macroscale directly due to that macroscopic laws of friction do not generally apply to nanoscale contacts. This thesis attempts to find more versatile methods of friction control and try to find the possibility to achieve friction control at macro-size.

Firstly, since viscosity plays an important role in elastohydrodynamic lubrication (EHL) at macro-size, it is instigated if it would be possible to adjust friction by controlling viscosity in a lubricated contact. By exploiting the ability to adjust the viscosity of the switchable ionic liquids, 1,8-Diazabicyclo (5.4.0) undec-7-ene (DBU)/ glycerol mixture via the addition of CO2, the friction could be controlled in the EHL regime (Paper Ⅰ). In order to understand more about the lubricating mechanism of DBU/glycerol/CO2 mixture, the central film thickness of the lubricants as a function of the entrainment speed was investigated.

Secondly, due to that adhesion could have influence on boundary lubrication (BL) friction at macro-size, it is investigated if it would be possible to adjust friction in a lubricated contact by controlling environmental humidity, which can alter the H-bond types, leading the change of adhesion. By exploiting the ability to adjust the environmental humidity by various saturated salt solutions, friction behavior lubricated by Choline L-Proline ([Cho][Pro]) could be modulated in a wide range of relative humidities (RH) (Paper Ⅱ).


Jing Hua

Luleå tekniska universitet; Maskinelement
Other publications >>

Shi Yijun

Luleå tekniska universitet; Maskinelement
Other publications >>

Shah Faiz

Luleå tekniska universitet; Kemiteknik
Other publications >>

Documents attached

Click on thumbnail to read

Record metadata

Click to view metadata