Acoustic design principles for energy efficient excitation of a high intensity cavitation zone
23rd International Congress on Acoustics,integrating 4th EAA Euroregio 2019
Document identifier: oai:DiVA.org:ltu-76063
Access full text here:
10.18154/RWTH-CONV-239450Keyword: Engineering and Technology,
Structural acoustics,
Electronic systems,
Engineering Acoustics,
Teknisk akustik,
Cavitation,
Hydrodynamics,
Ultrasound,
Annan elektroteknik och elektronik,
Mechanical Engineering,
Elektroteknik och elektronik,
Other Electrical Engineering, Electronic Engineering, Information Engineering,
Electrical Engineering, Electronic Engineering, Information Engineering,
Strömningsmekanik och akustik,
Maskinteknik,
Teknik och teknologier,
Fluid Mechanics and Acoustics,
ElektroniksystemPublication year: 2019Relevant Sustainable Development Goals (SDGs):
The SDG label(s) above have been assigned by OSDG.aiAbstract: Energy-efficient process intensification is a key aspect for a sustainable industrial production. To improve energy conversion efficiency high intensity cavitation is a promising method, especially in cases where the material to be treated is valuable and on the micro meter scale. Transient collapsing cavitation bubbles gives powerful effects on objects immersed in fluids, like cellulose fibers, mineral particles, enzymes, etc. The cavitation process needs optimization and control, since optimal conditions is multivariate challenge. This study focuses on different design principles to achieve high intensity cavitation in a specific volume in a continuous flow. This study explores some potential design principles to obtain energy efficient process intensification. The objective is to tune several different resonance phenomena to create a powerful excitation of a flowing suspension (two-phase flow and cavitation bubbles). The reactor is excited by sonotrodes, connected to two coupled resonant tube structures, at the critical frequency. Finally cavitation bubbles are initiated by a flow through a venturi nozzle. The acoustically optimised reactor geometry is modelled in Comsol Multiphysics®, and excited by dedicated ultrasound signals at three different frequencies. The effect of the high intensity cavitation is experimentally evaluated by calorimetric method, foil tests and degree of fibrillation on cellulose fibers.
Authors
Örjan Johansson
Luleå tekniska universitet; Drift, underhåll och akustik
Other publications
>>
Taraka Pamidi
Luleå tekniska universitet; Drift, underhåll och akustik
Other publications
>>
Vijay Shankar
Luleå tekniska universitet; Drift, underhåll och akustik
Other publications
>>
Torbjörn Löfqvist
Luleå tekniska universitet; EISLAB
Other publications
>>
Documents attached
|
Click on thumbnail to read
|
Record metadata
Click to view metadata
header:
identifier: oai:DiVA.org:ltu-76063
datestamp: 2021-04-19T12:54:39Z
setSpec: SwePub-ltu
metadata:
mods:
@attributes:
version: 3.7
recordInfo:
recordContentSource: ltu
recordCreationDate: 2019-09-19
identifier:
http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-76063
10.18154/RWTH-CONV-239450
titleInfo:
@attributes:
lang: eng
title: Acoustic design principles for energy efficient excitation of a high intensity cavitation zone
abstract: Energy-efficient process intensification is a key aspect for a sustainable industrial production. To improve energy conversion efficiency high intensity cavitation is a promising method especially in cases where the material to be treated is valuable and on the micro meter scale. Transient collapsing cavitation bubbles gives powerful effects on objects immersed in fluids like cellulose fibers mineral particles enzymes etc. The cavitation process needs optimization and control since optimal conditions is multivariate challenge. This study focuses on different design principles to achieve high intensity cavitation in a specific volume in a continuous flow. This study explores some potential design principles to obtain energy efficient process intensification. The objective is to tune several different resonance phenomena to create a powerful excitation of a flowing suspension (two-phase flow and cavitation bubbles). The reactor is excited by sonotrodes connected to two coupled resonant tube structures at the critical frequency. Finally cavitation bubbles are initiated by a flow through a venturi nozzle. The acoustically optimised reactor geometry is modelled in Comsol Multiphysics® and excited by dedicated ultrasound signals at three different frequencies. The effect of the high intensity cavitation is experimentally evaluated by calorimetric method foil tests and degree of fibrillation on cellulose fibers.
subject:
@attributes:
lang: eng
authority: uka.se
topic:
Engineering and Technology
Mechanical Engineering
Fluid Mechanics and Acoustics
@attributes:
lang: swe
authority: uka.se
topic:
Teknik och teknologier
Maskinteknik
Strömningsmekanik och akustik
@attributes:
lang: eng
authority: uka.se
topic:
Engineering and Technology
Electrical Engineering Electronic Engineering Information Engineering
Other Electrical Engineering Electronic Engineering Information Engineering
@attributes:
lang: swe
authority: uka.se
topic:
Teknik och teknologier
Elektroteknik och elektronik
Annan elektroteknik och elektronik
@attributes:
lang: eng
topic: Structural acoustics
@attributes:
lang: eng
topic: Ultrasound
@attributes:
lang: eng
topic: Hydrodynamics
@attributes:
lang: eng
topic: Cavitation
@attributes:
lang: swe
authority: ltu
topic: Teknisk akustik
genre: Research subject
@attributes:
lang: eng
authority: ltu
topic: Engineering Acoustics
genre: Research subject
@attributes:
lang: eng
authority: ltu
topic: Electronic systems
genre: Research subject
@attributes:
lang: swe
authority: ltu
topic: Elektroniksystem
genre: Research subject
language:
languageTerm: eng
genre:
conference/other
ref
note:
Published
4
ISBN för värdpublikation: 978-3-939296-15-7
name:
@attributes:
type: personal
authority: ltu
namePart:
Johansson
Örjan
1963-
role:
roleTerm: aut
affiliation:
Luleå tekniska universitet
Drift underhåll och akustik
nameIdentifier:
orjo
0000-0003-2955-2776
@attributes:
type: personal
authority: ltu
namePart:
Pamidi
Taraka
role:
roleTerm: aut
affiliation:
Luleå tekniska universitet
Drift underhåll och akustik
nameIdentifier:
tarpam
0000-0002-4657-6844
@attributes:
type: personal
authority: ltu
namePart:
Shankar
Vijay
role:
roleTerm: aut
affiliation:
Luleå tekniska universitet
Drift underhåll och akustik
nameIdentifier: vijsha
@attributes:
type: personal
authority: ltu
namePart:
Löfqvist
Torbjörn
role:
roleTerm: aut
affiliation:
Luleå tekniska universitet
EISLAB
nameIdentifier: tlt
relatedItem:
@attributes:
type: host
genre: grantAgreement
name:
@attributes:
type: corporate
namePart: Energimyndigheten
role:
roleTerm: fnd
@attributes:
type: host
titleInfo:
title: Proceedings of theICA 2019 AND EAA EUROREGIO
subTitle: 23rd International Congress on Acousticsintegrating 4th EAA Euroregio 2019
part:
extent:
start: 948
end: 955
@attributes:
type: series
titleInfo:
title: Proceedings of the ICA congress
identifier:
2226-7808
2415-1599
originInfo:
dateIssued: 2019
publisher: RWTH Publications
place:
placeTerm: Aachen Germany
location:
url: http://ltu.diva-portal.org/smash/get/diva2:1352669/FULLTEXT01.pdf
accessCondition: gratis
physicalDescription:
form: electronic
typeOfResource: text