Neural networks for image-based wavefront sensing for astronomy
Document identifier: oai:DiVA.org:ltu-76039
Access full text here:
10.1364/OL.44.004618Keyword: Engineering and Technology,
Electrical Engineering, Electronic Engineering, Information Engineering,
Signal Processing,
Teknik och teknologier,
Elektroteknik och elektronik,
Signalbehandling,
Convolutional neural network,
Astronomical telescope,
Wavefront sensing,
Zernike polynomials,
Atmospheric science,
AtmosfärsvetenskapPublication year: 2019Abstract: We study the possibility of using convolutional neural networks for wavefront sensing from a guide star image in astronomical telescopes. We generated a large number of artificial atmospheric wavefront screens and determined associated best-fit Zernike polynomials. We also generated in-focus and out-of-focus point-spread functions. We trained the well-known “Inception” network using the artificial data sets and found that although the accuracy does not permit diffraction-limited correction, the potential improvement in the residual phase error is promising for a telescope in the 2–4 m class.
Authors
Torben Andersen
Lund Observatory, Lund University
Other publications
>>
Mette Owner-Petersen
Lund Observatory, Lund University
Other publications
>>
Anita Enmark
Luleå tekniska universitet; Rymdteknik
Other publications
>>
Record metadata
Click to view metadata
header:
identifier: oai:DiVA.org:ltu-76039
datestamp: 2021-04-19T12:56:42Z
setSpec: SwePub-ltu
metadata:
mods:
@attributes:
version: 3.7
recordInfo:
recordContentSource: ltu
recordCreationDate: 2019-09-17
identifier:
http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-76039
10.1364/OL.44.004618
31517947
2-s2.0-85072106843
titleInfo:
@attributes:
lang: eng
title: Neural networks for image-based wavefront sensing for astronomy
abstract: We study the possibility of using convolutional neural networks for wavefront sensing from a guide star image in astronomical telescopes. We generated a large number of artificial atmospheric wavefront screens and determined associated best-fit Zernike polynomials. We also generated in-focus and out-of-focus point-spread functions. We trained the well-known “Inception” network using the artificial data sets and found that although the accuracy does not permit diffraction-limited correction the potential improvement in the residual phase error is promising for a telescope in the 2–4 m class.
subject:
@attributes:
lang: eng
authority: uka.se
topic:
Engineering and Technology
Electrical Engineering Electronic Engineering Information Engineering
Signal Processing
@attributes:
lang: swe
authority: uka.se
topic:
Teknik och teknologier
Elektroteknik och elektronik
Signalbehandling
@attributes:
lang: eng
topic: convolutional neural network
@attributes:
lang: eng
topic: astronomical telescope
@attributes:
lang: eng
topic: wavefront sensing
@attributes:
lang: eng
topic: Zernike polynomials
@attributes:
lang: eng
authority: ltu
topic: Atmospheric science
genre: Research subject
@attributes:
lang: swe
authority: ltu
topic: Atmosfärsvetenskap
genre: Research subject
language:
languageTerm: eng
genre:
publication/journal-article
ref
note:
Published
3
Validerad;2019;Nivå 2;2019-09-20 (johcin)
name:
@attributes:
type: personal
namePart:
Andersen
Torben
role:
roleTerm: aut
affiliation: Lund Observatory Lund University
@attributes:
type: personal
namePart:
Owner-Petersen
Mette
role:
roleTerm: aut
affiliation: Lund Observatory Lund University
@attributes:
type: personal
authority: ltu
namePart:
Enmark
Anita
role:
roleTerm: aut
affiliation:
Luleå tekniska universitet
Rymdteknik
nameIdentifier: ae
originInfo:
dateIssued: 2019
publisher: Optical Society of America
relatedItem:
@attributes:
type: host
titleInfo:
title: Optics Letters
identifier:
0146-9592
1539-4794
part:
detail:
@attributes:
type: volume
number: 44
@attributes:
type: issue
number: 18
extent:
start: 4618
end: 4621
physicalDescription:
form: print
typeOfResource: text