Explicit formulas for Green's functions on the annulus and on the Möbius strip

Document identifier: oai:DiVA.org:ltu-7575
Access full text here:10.1023/A:1006150004533
Keyword: Natural Sciences, Mathematics, Mathematical Analysis, Naturvetenskap, Matematik, Matematisk analys
Publication year: 1998
Relevant Sustainable Development Goals (SDGs):
SDG 7 Affordable and clean energy
The SDG label(s) above have been assigned by OSDG.ai

Abstract:

Given a fixed point free antianalytic involution k of a domain G in thecomplex plane, bounded by a finite number of analytic curves, k-invariant Green sfunctions are defined on G. The Lindelöf s principle is extended to k-invariantGreen s functions. When G is the annulus, k-invariant Green s functions areobtained in the explicit form. Since the factorization of the annulus by the group k generated by k produces a Möbius strip, the respective result helped us to obtain explicitforms for Green s functions on the Möbius strip.symmetric Riemann surface - nonorientable Klein surface - Green s function - k-invariant Green s function

Authors

Ilie Barza

Luleå tekniska universitet
Other publications >>

Dorin Ghisa

Glendon College, York University, Toronto
Other publications >>

Record metadata

Click to view metadata