Explicit formulas for Green's functions on the annulus and on the Möbius strip
Document identifier: oai:DiVA.org:ltu-7575
Access full text here:
10.1023/A:1006150004533Keyword: Natural Sciences,
Mathematics,
Mathematical Analysis,
Naturvetenskap,
Matematik,
Matematisk analysPublication year: 1998Relevant Sustainable Development Goals (SDGs):
The SDG label(s) above have been assigned by OSDG.aiAbstract: Given a fixed point free antianalytic involution k of a domain G in thecomplex plane, bounded by a finite number of analytic curves, k-invariant Green sfunctions are defined on G. The Lindelöf s principle is extended to k-invariantGreen s functions. When G is the annulus, k-invariant Green s functions areobtained in the explicit form. Since the factorization of the annulus by the group k generated by k produces a Möbius strip, the respective result helped us to obtain explicitforms for Green s functions on the Möbius strip.symmetric Riemann surface - nonorientable Klein surface - Green s function - k-invariant Green s function
Authors
Ilie Barza
Luleå tekniska universitet
Other publications
>>
Dorin Ghisa
Glendon College, York University, Toronto
Other publications
>>
Record metadata
Click to view metadata
header:
identifier: oai:DiVA.org:ltu-7575
datestamp: 2021-04-19T12:58:13Z
setSpec: SwePub-ltu
metadata:
mods:
@attributes:
version: 3.7
recordInfo:
recordContentSource: ltu
recordCreationDate: 2016-09-29
identifier:
http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-7575
10.1023/A:1006150004533
2-s2.0-17444439590
5f5be170-b079-11db-840a-000ea68e967b
titleInfo:
@attributes:
lang: eng
title: Explicit formulas for Green's functions on the annulus and on the Möbius strip
abstract: Given a fixed point free antianalytic involution k of a domain G in thecomplex plane bounded by a finite number of analytic curves k-invariant Green sfunctions are defined on G. The Lindelöf s principle is extended to k-invariantGreen s functions. When G is the annulus k-invariant Green s functions areobtained in the explicit form. Since the factorization of the annulus by the group k generated by k produces a Möbius strip the respective result helped us to obtain explicitforms for Green s functions on the Möbius strip.symmetric Riemann surface - nonorientable Klein surface - Green s function - k-invariant Green s function
subject:
@attributes:
lang: eng
authority: uka.se
topic:
Natural Sciences
Mathematics
Mathematical Analysis
@attributes:
lang: swe
authority: uka.se
topic:
Naturvetenskap
Matematik
Matematisk analys
@attributes:
lang: swe
authority: ltu
topic: Matematik
genre: Research subject
@attributes:
lang: eng
authority: ltu
topic: Mathematics
genre: Research subject
language:
languageTerm: eng
genre:
publication/journal-article
ref
note:
Published
2
Godkänd; 1998; 20070130 (kani)
name:
@attributes:
type: personal
namePart:
Barza
Ilie
role:
roleTerm: aut
affiliation: Luleå tekniska universitet
@attributes:
type: personal
namePart:
Ghisa
Dorin
role:
roleTerm: aut
affiliation: Glendon College York University Toronto
originInfo:
dateIssued: 1998
relatedItem:
@attributes:
type: host
titleInfo:
title: Acta Applicandae Mathematicae - An International Survey Journal on Applying Mathematics and Mathematical Applications
identifier:
0167-8019
1572-9036
part:
detail:
@attributes:
type: volume
number: 54
@attributes:
type: issue
number: 3
extent:
start: 289
end: 302
physicalDescription:
form: print
typeOfResource: text